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Abstract

Anomalous seismic attributes known as Direct
Hydrocarbon Indicators (DHI) are used to identify
hydrocarbons in oil and/or gas reservoirs. However, in
most situations, these anomalies are hardly detected
due to the large amount of data to be interpreted.
Nowadays, deep learning techniques are used to solve
problems that consume time and demand human effort
with good accuracy. In this study, a methodology to
detect gas using seismic data and a Transformer
Neural Network is presented. That methodology
has been applied considering offshore and onshore
seismic data. The presented results show a good
accuracy and demonstrate the capabilities of this
proposal for exploration purposes.

Introduction

Seismic reflection is one of the most used geophysical
methods in the oil and gas (O&G) industry to extract data
related with the structure of subsurface layers, lithology
and rock properties (Pochet et al., 2018; Di et al.,
2018; Chevitarese et al., 2018). Furthermore, through
seismic reflection, the location and volume estimates of gas
accumulations can be inferred for reducing the geological
risk of exploration wells (Santos, 2019; Morton-Thompson
et al., 1993). However, as large amount of information is
produced, considerable effort and time from specialized
teams is required to interpret the seismic data.

In the literature, the use of machine learning techniques
together with the extraction of seismic attributes have been
used to help geoscientists in seismic interpretation (Guitton
et al., 2017; Di et al., 2017). For instance, Araya-Polo et al.
(2017) used deep neural networks trained with synthetic
data to detect seismic faults. Chevitarese et al. (2018) used
Convolutional Neural Networks (CNN) and Zhao (2018)
used an image segmentation network for the classification
of seismic facies.

Santos (2019) and Santos et al. (2019) proposed a novel
methodology to detect DHIs on seismic data applying a
Long Short-Term Memory (LSTM) neural network on the
seismic trace scale. In their proposal, each seismic trace
is divided into patches that are the entrance to the LSTM
network along with the labeling of each patch. Then, the
network generates a probabilities map to detect gas in
each region of the seismic image. For train, test and
validation, Santos (2019) used the public offshore data
from the Netherlands F3-Block. More recently, Santos et

al. (2020) improved such methodology taking into account
Transfer Learning and presented applications in onshore
data in some areas of the Parnaı́ba basin known as
”Parque dos Gaviões” de Miranda et al. (2018). The
tests showed satisfactory predictions of gas detection
considering onshore and offshore surveys. Moreover,
that methodology can be adopted with 2D or 3D seismic
acquisitions. However, for exploratory fields, without
any indication of gas, there are still some uncertainties
regarding the effectiveness of such methodology.

In order to reduce such uncertainties, in this study is
proposed a new artificial intelligence technique based on
a Transformer Neural Network for applications of natural
gas detection. The Transformer is a deep learning model
introduced recently in 2017 by Vaswani et al. (2017) that
uses the mechanism of attention. The main applications
have been in the area of natural language processing
(NLP). Owing to its capabilities for parallelization during
training, Transformer has replaced previous neural network
models on NLP problems (Wu et al., 2020). In this
sense, the proposed methodology in this study (Figure 1)
is similar to that initially presented by Santos (2019),
but uses a Transformer Neural Network designed for gas
detection. For comparison purposes between LSTM and
Transformer, data corresponding to the Netherlands F3-
Block and Parque dos Gaviões are considered. The results
are compared in terms of accuracy, sensitivity, specificity
and area under roc curve (AUC).

Materials and Methods

In this section, the proposed methodology to detect gas
is described in three steps as illustrated in Figure 1. In
the first step, the seismic data used in this study are
briefly introduced. In the second step, some preprocessing
techniques required for data preparation are discussed.
Finally, in the third step, the Transformer neural network
used to perform the experiments is described.

Seismic Data

The experiments performed in this study are based
on three seismic datasets. The first considers the
Netherlands Offshore F3-Block, a public repository that
can be accessed at the Open Seismic Repository dGB
Earth Sciences (1987). This dataset contains 384 square
kilometers of time migrated 3D-seismic data that includes
651 inline interval and 951 crossline interval and a time
range of 1848 ms, with a sampling of 4 ms (Kushwaha et
al., 2020).

The second and third seismic datasets correspond to the
paleozoic Parnaı́ba Basin located in the northeast region
of Brazil. Parnaı́ba is a classic oval-shaped intracratonic
basin, covering an area of more than 600,000 square
kilometers and a maximum thickness of 3,500 m. The
geological mapping of this region started in the twentieth
century (1909-10) aiming to find coal and fresh water
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Figure 1: Flowchart of the method

reserves. Subsequent explorations have focused on the
detection of oil and gas, producing new 2D and 3D
geological maps (de Miranda et al., 2018). The available
data consist of three hundred and eighty 2D seismic lines,
corresponding to the area known as ”Parque dos Gaviões”,
later divided into named fields: Gavião Real, Gavião Azul,
Gavião Branco, Gavião Branco Norte, Gavião Vermelho,
Gavião Caboclo and Gavião Preto (Figure 2). Among
them, Gavião Vermelho and Gavião Branco were chosen
in this study due to their greater availability of seismic data.
Those data were provided by Eneva, a Brazilian company
of power generation.

Figure 2: Parque dos Gaviões (de Miranda et al., 2018)

Preprocessing

Similar to Brownlee (2018) and Santos (2019), the
proposed methodology uses a one-dimensional signal
approach. However, the first dataset is composed of
3D seismic data while the second and the third datasets
are composed of 2D seismic data. Moreover, onshore
seismic data are in general quite noisy. Therefore,
preprocessing steps are performed in order to perform
the one-dimensional signal approach and to mitigate the
noise effect of the seismic data. Those steps consist on
noise and dimensionality reduction. Firstly, the number
of samples for the analyses are reduced by delimiting,
in time and length, a ROI that may contain gas. Such
process is performed in each dataset to indicate the gas
patterns that the Transformer neural network model must
learn to identify. Based on field data, drilled exploration
wells and interpretation, Eneva’s geoscientists delimitated
the ROI in the datasets of Gavião Vermelho and Gavião
Branco. Then, seismic traces are extracted from each
seismic data and finally, a windowing process is applied
to extract samples of size 65x1 with superposition and step
size of 1. It is worth mentioning that each sample must
have a minimum size sufficiently capable of carrying useful
information from neighboring regions (Santos et al., 2019).

Gas Detection using Transformer Neural Network

Following the proposed methodology, the next step is
to classify the seismic trace samples in ”gas” or ”non-
gas” through the Transformer neural network. Transformer
does not use recurrence and convolution, but self-attention
mechanisms to draw global dependencies between input
and output data. Due to that feature, Transformer can
perform significantly more computation in parallel (Vaswani
et al., 2017). Moreover, Transformer is an encoder-decoder
architecture. The encoder consists of six identical encoder
layers stack. Each encoder layer has the same architecture
and is composed of two main components: self-attention
and a feed-forward neural network. The decoder is quite
similar to the encoder, both have the same layers, but
between them there is an extra attention layer. Figure 3
shows the Transformer architecture adopted in this study.
It consists of a Time Delay Embedding layer (Pan and
Duraisamy, 2020), a Transformer, and two fully connected
layers. Then, dropout techniques between fully connected
layers are applied. A dropout rate of 0.1 is used for each
sub-layer. Figure 4 shows the proposed model. As a result,
a binary classification of gas and non-gas is obtained.
Finally, some validation metrics such as accuracy (Acc),
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sensitivity (Sens), specificity (Spec), and area under roc
curve (AUC) are used to check the efficiency of the
proposed method (Duda, 1973).

Figure 3: Transformer Neural Network adapted from Dugar
(2019)

Figure 4: The Transformer-based proposed model

Results and Discussion

For evaluation, each dataset was divided into three
subsets: 60% for training, 20% for validation and 20% for
testing. Table 1 shows the number of samples with gas and
non-gas in each dataset.

Table 1: Gas and non-gas samples by dataset.

Field Set Gas Non-Gas

F3-block Train 1,154,386 5,159,114
Validation 237,408 9,775,092

Gavião Vermelho Train 9,570 656,050
Validation 4,950 192,884

Gavião Branco Train 43,130 3,193,562
Validation 12,650 1,075,634

It is observed that the three datasets are quite
heterogeneous regarding the number of samples.
Moreover, all the datasets have more negative samples
than positive, becoming difficult for the model to
differentiate the two classes. Therefore, the sample
proportion at each dataset was balanced to solve this

issue. In this sense, samples labeled as non-gas
were randomly selected maintaining a proportion of 1
gas-sample to 4 non-gas samples towards realizing
experiments with unbalanced data, which is expected for
the problem.

Regarding internal Transformer parameters, the
embedding size, the number of attention heads and
the hidden layers in the feed-forward network are set
to 20, 10 and 32, respectively. The Transformer model
was trained with 100 epochs using a batch size with 64
samples, the ADAM optimizer function was considered with
a fixed learning rate of 1e-5 and a binary cross-entropy as
a loss function. Table 2 presents the resultant metrics in
all datasets using Transformer. For comparison purposes,
Table 3 shows the metrics achieved by Santos (2019) for
the F3 block.

Table 2: Classification results using Transformer

Dataset Metrics
Acc (%) Sens (%) Spec (%) AUC (%)

F3
Inline 94.51 95.05 94.50 94.78

F3
Crossline 97.33 94.30 97.30 95.85

Gavião
Vermelho 98.93 59.75 99.20 79.48

Gavião
Branco 97.03 68.87 97.25 83.06

Table 3: Classification results using LSTM (Santos, 2019)

Dataset Metrics
Acc (%) Sens (%) Spec (%) AUC (%)

F3
Inline 97.16 97.83 97.15 98.80

F3
Crossline 96.83 94.77 96.87 98.81

Considering the Inline seismic sections from F3-dataset,
it is observed that Santos (2019) obtained slightly better
results in all metrics. However, from the comparison
of the Crossline seismic sections, the current proposal
show a slight improvement. Figure 5 shows the output
prediction using the Transformer neural network in F3-
dataset. The red regions in the ground truth represent
potential gas regions defined through interpretation of
geoscientists and the green regions in the output model
represent the corresponding predictions. It is noticed that
the model results match very well with the expected gas
regions.

From the results in Gavião Vermelho and Gavião Branco,
good accuracy and specificity are obtained. However,
sensitivity and AUC presented metrics significantly lower.
This contrast in the results can be attributed to the quality
of the seismic data, since the seismic datasets from the
Parnaı́ba Basin are noisier than those of the F3-block.
Consequently, the model can generate miss-classified
samples. Moreover, the gas reservoir layers in Parnaı́ba’s
Basin are more difficult to classify owing to the quality of
the seismic data. Besides, Gavião Vermelho and Gavião
Branco have fewer samples than the F3-block and that
could explain the lower metrics in sensitivity. Therefore, the
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Figure 5: Ground Truth and output model (F3)

predictions in those fields presented blemishes and some
false positives, as illustrated in Figure 6 and Figure 7. Even
so, the models were capable of predicting potential gas
regions.

Figure 6: Ground Truth and output model (Gavião
Vermelho)

Figure 7: Ground Truth and output model (Gavião Branco)

Conclusions

A methodology based on Transformers neural network to
detect gas using seismic data was presented in this study.
Compared to deep learning-based sequence networks,
the proposed model uses self-attention mechanisms for
learning complex dependencies in seismic data samples.
Since its recent introduction, Transformer has been used
for natural language processing. Therefore, this is the first
time that such neural network is applied with seismic data
to detect potential gas regions.

The proposed methodology uses a one-dimensional signal
approach. Therefore, it can be used with 2D or 3D seismic
acquisitions, but some steps are necessary to prepare the
data before performing the tests. In total, three datasets
are used in this study. The first correspond to offshore
seismic data from the F3-Block in Netherlands and the
others are onshore data from Parnaı́ba’s Basin in Brazil.

According to the metrics used to check the results quality,
the proposed neural network achieved good predictions
in comparison with previous solutions reported in the
literature. In relation to the F3-block, the model predictions
matched very well with potential gas regions, showing
excellent metrics in accuracy, sensitivity, specificity and
AUC. Regarding Gavião Vermelho and Gavião Branco, the
proposed model was also capable to detect expected gas
regions. Yet, owing to the limited number and the low
quality of seismic data in onshore acquisitions, the model
predicted some regions with false positives which can
be responsible for the low metrics obtained in sensitivity.
Further research is being carried out to improve the
handling of onshore seismic data. However, in general,
it was demonstrated that the proposed methodology is
promising and can assist experts in detecting possible gas
signatures on seismic data during exploration phases.
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